Existence results for a class of nonlocal problems involving p-Laplacian
نویسندگان
چکیده
where Ω is a smooth bounded domain in R, 1 0, such that (M0) M(t) ≥ m0 for all t ≥ 0. f (x, t) : × R → R is a continuous function and satisfies the subcritical condition: ∣∣f (x, t)∣∣ ≤ C(|t|q−1 + 1), for some p < q < p∗ = { Np N−p , N ≥ 3; +∞, N = 1, 2. (1:2)
منابع مشابه
Existence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic
We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...
متن کاملExistence of a positive solution for a p-Laplacian equation with singular nonlinearities
In this paper, we study a class of boundary value problem involving the p-Laplacian oprator and singular nonlinearities. We analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ We find lower bounds of critical parameter $lambda^{ast}$. We use the method ...
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملExistence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator
The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.
متن کاملGlobal Compactness Results for Nonlocal Problems
We obtain a Struwe type global compactness result for a class of nonlinear nonlocal problems involving the fractional p−Laplacian operator and nonlinearities at critical growth.
متن کاملNon-Local Morphological PDEs and p-Laplacian Equation on Graphs With Applications in Image Processing and Machine Learning
In this paper, we introduce a new class of nonlocal p-Laplacian operators that interpolate between non-local Laplacian and infinity Laplacian. These operators are discrete analogous of the game p-laplacian operators on Euclidean spaces, and involve discrete morphological gradient on graphs. We study the Dirichlet problem associated with the new p-Laplacian equation and prove existence and uniqu...
متن کامل